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ABSTRACT
Online social networks (OSNs) are appealing platforms for
spammers and fraudsters, who typically use fake or compro-
mised accounts to connect with and defraud real users. To
combat such abuse, OSNs allow users to report fraudulent
profiles or activity. The OSN can then use reporting data
to review and/or limit activity of reported accounts.

Previous authors have suggested that an OSN can aug-
ment its takedown algorithms by identifying a “trusted set”
of users whose reports are weighted more heavily in the dis-
position of flagged accounts. Such identification would allow
the OSN to improve both speed and accuracy of fake account
detection and thus reduce the impact of spam on users.

In this work we provide the first public, data-driven as-
sessment of whether the above assumption is true: are some
users better at reporting than others? Specifically, is re-
porting skill both measurable, i.e., possible to distinguish
from random guessing; and repeatable, i.e., persistent over
repeated sampling?

Our main contributions are to develop a statistical frame-
work that describes these properties and to apply this frame-
work to data from LinkedIn, the professional social network.
Our data includes member reports of fake profiles as well
as the more voluminous, albeit weaker, signal of member
responses to connection requests. We find that members
demonstrating measurable, repeatable skill in identifying
fake profiles do exist but are rare: at most 2.4% of those
reporting fakes and at most 1.3% of those rejecting connec-
tion requests. We conclude that any reliable “trusted set”
of members will be too small to have noticeable impact on
spam metrics.

Keywords: Social networks; spam detection; online trust;
fake accounts; reputation systems.

1. INTRODUCTION
Online social networks’ ubiquity and popularity make them

appealing platforms for spammers and fraudsters to exe-
cute their dirty deeds. Since most large OSNs (e.g. Face-
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book [11, §4] and LinkedIn [16, §8]) require user accounts
to reflect a real identity, malicious actors use fake or com-
promised accounts to connect with and defraud real, unsus-
pecting users of the platform. Combatting fake accounts
(also known as sybils) and preventing unauthorized access
have thus received much attention from both researchers and
practitioners, and there is a large body of work on fake ac-
count detection [5,6,9,19,24,26,28,29] and account takeover
prevention [2–4,13] in the literature.

To help combat this abuse, OSNs make available to users
a variety of mechanisms for reporting fraudulent profiles or
activity, such as“flag”or“report spam” interfaces. The OSN
can then review and/or limit activity of accounts that have
been reported, for example if a user receives too many re-
ports in a given time period. In addition, there may be
mechanisms for users to take positive action on real accounts
(e.g., accept an invitation request), which can also serve as
a form of reporting.

It seems reasonable to assume that some users are more
adept at distinguishing fake profiles from real ones; indeed,
several previous works on identifying spam or fake accounts
have made use of this assumption [6, 7, 25, 30]. If this as-
sumption is true, then the OSN can augment its takedown
algorithms by identifying a“trusted set”of users whose feed-
back is weighted more heavily in the disposition of flagged
accounts. Such identification would allow the OSN to im-
prove both speed and accuracy of fake account detection and
thus reduce the impact of spam on users.1

While the potential for leveraging high-quality reporters
seems high, to date there has been no rigorous published
study of reporting ability in real-life social networks. The
goal of this paper is thus to test the following hypothesis:
There are some social network users who are good at iden-
tifying fake accounts.

1.1 Our contribution
In this work we provide the first public, data-driven as-

sessment of user feedback signals in the context of reporting
fake accounts in online social networks. In particular:

• We provide a statistical framework for assessing user
reporting skill. If flagging is a real skill, it must bemea-
surable; that is, we should be able to determine which
users are particularly skilled at flagging and quantify
how skilled they are. Furthermore, flagging skill must

1To prevent manipulation of the flagging signal, any
“trusted” label should not be exposed to the end user (ei-
ther directly or indirectly).
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be repeatable; that is, a user who demonstrates supe-
rior flagging ability in one data set should be able to
demonstrate the same ability on a di↵erent sample or
at a di↵erent point in time. If flagging is measurable
but not repeatable then even once we identify good
flaggers, the OSN cannot use their future flagging ac-
tivity to help catch fake accounts.

• We apply our framework to data from LinkedIn, the
professional social network. We consider three di↵er-
ent signals: flagging of fake profiles, accepting connec-
tion requests, and rejecting connection requests. We
find that members demonstrating measurable, repeat-
able skill in identifying fake profiles exist but are rare:
at most 2.4% of members reporting fake accounts over
a six-month period, and at most 1.3% of members re-
jecting connection requests over a one-month period.
We also find that up to 3.8% of members accepting
connection requests show skill in identifying real ac-
counts.

We note that our analysis is concerned with aggregating
reporting signals by reporter. LinkedIn and many other
social networks also aggregate signals by reportee; indeed,
a primary motivation for this work is to explore whether
reporter-based signals might be e↵ectively incorporated into
existing reportee-based systems.

We note further that all signals in our data set were col-
lected organically, without specifically instructing users to
look out for fake accounts. This leaves open the question of
whether targeted user prompting or some other o�cal spam-
finding program would increase the prevalence of skilled re-
porters.

1.2 Related work
Zheleva et al. [30] describe a system for email spam fil-

tering that uses the very kind of reporter reputation whose
existence we are trying to establish, and Chen et al. [7] de-
velop a similar system for fighting SMS spam. Both pa-
pers propose a framework in which reports of reliable users
are weighted more highly in classifying spam, and provide
a mechanism for evolving reporter reputation over time as
new reports come in. However, the system of Zheleva et al.
requires “an initial set of users who have proven to be re-
liable in the past,” and the authors implicitly assume that
such a set both (a) can be identified and (b) will continue to
be reliable in the future. Our work calls into question this
assumption, at least in the domain of social networks.

Wang et al. [25] describe a crowdsourcing study in which
workers are shown accounts and asked to label them as real
or fake. They find that in this artificial setting, “people
can identify di↵erences between Sybil and legitimate pro-
files, but most individual testers are not accurate enough
to be reliable.” They quantify this reliability only in terms
of accuracy and do not attempt to test repeatability of the
workers’ labeling.

Moore and Clayton [20] and Chia and Knapskog [8] have
studied the “wisdom of crowds” in reporting phishing and
web vulnerabilities, respectively. Both studies find a power-
law distribution in participation rates, and the former finds
that more frequent reporters achieve higher accuracy and
recommend that “the views of inexperienced users should
perhaps be assigned less weight when compared to highly
experienced users.” However, Moore and Clayton do not

suggest how such a weight should be determined algorith-
mically, nor do they consider repeatability.

Cao et al. [6] use negative feedback such as invitation re-
jection and spam reporting to downweight graph edges in the
SybilRank algorithm [5], but they do not consider quality or
trustworthiness of the reporters.

More generally, our work is related to the wide body of
research on peer-to-peer reputation systems [17,23], as prac-
ticed for example in online auction houses such as eBay. In
such systems parties leave publicly visible feedback on each
other, which is aggregated per recipient to produce a repu-
tation score. Guha et al. [14] describe how this reputation
can propagate through a network and be used to predict
trust between two nodes. Our situation is slightly di↵erent
in that we are aggregating on the user leaving feedback and
the feedback is not public.

2. EVALUATING REPORTING ABILITY
To assess whether the ability to identify fake accounts is

a real skill, we quantify the ability along two axes: whether
it is measurable, and whether it is repeatable. Certainly if
we cannot determine which members are better or worse at
identifying fakes, then it will be impossible to leverage this
ability in those members for whom it exists. Furthermore,
even if we can identify some members as being particularly
good at identifying fakes, this ability is of no use if it is
transient.

We begin by setting some notation to model social net-
work interaction and reporting events. Let U be the set of
users in a social network. We let u 2 U be a (real) user
of the social network and let x(u) = {x1, . . . , xn} 2 U

n be
a set of users to which user u is exposed during time pe-
riod [t1, t2]. For example, these could be users who invite
u to connect, whose profile u views, or who appear in u’s
news feed. Each of the users xi has a truth label yi 2 {0, 1}
indicating whether this user is real (1) or fake (0).

At any given time t0 2 [t1, t2], user u may emit a reporting
action R for any of the users xi 2 x. The action R may
be positive, designed to apply to real accounts (e.g. accept
connection request), or negative, designed to apply to fake
accounts (e.g. flag as spam). We define �(R) to be 1 for
positive actions and 0 for negative actions. For each i we
define

ri =

⇢
1 if u reports xi,
0 if u does not report xi.

We assume that the reporting action R is fixed for any given
data set (i.e., we do not analyze data sets with mixed ac-
tions) and thus �(R) is well-defined for the entire data set.

Given this notation, we now have four possible outcomes
for each user xi 2 x: the user can be real or fake, and the
user can be reported or ignored. We denote the quantities
of each outcome by au, bu, cu, du, defined as follows:

Reported Ignored

Real au =
P

i riyi bu =
P

i(1� ri)yi
Fake cu =

P
i ri(1� yi) du =

P
i(1� ri)(1� yi)

(1)
We now use these quantities to develop scores that mea-

sure reporting ability.
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2.1 Measurability
We start by defining reporter precision; i.e., the probabil-

ity that a given report will be correct. Concretely, if r0 is a
reporting event from u on a new member x0 with truth label
y0, then we define the precision score to be

P̃ (u) = Pr[y0 = �(R) | r0 = 1]. (2)

We can estimate this probability as follows:

P (u) =
au�(R) + cu(1� �(R))

au + cu
. (3)

Our definition guarantees that a score of 1 corresponds to
the best reporter regardless of whether the reporting action
is designed to identify real or fake accounts.

We observe that the precision score P does not distinguish
a reporter who flagged once and was correct from one who
flagged 50 times and was always correct. To make this dis-
tinction we smooth the precision score by adding ↵ correct
and ↵ incorrect flags to the user’s data, and denote the re-
sulting function by Ps(u). Now for ↵ = 1, the user flagging
only once correctly has Ps(u) = 0.67 while the user flagging
50 times correctly has Ps(u) = 0.98. For each data set we
analyze, we determine the optimal value of ↵ by evaluating
area under the precision-recall curve [10] on a test set.

Informedness. The precision score P has an additional
drawback in terms of measuring reporting ability: it is in-
sensitive to the relative proportion of real and fake accounts
that user u has interacted with, and in particular does not
take into account the users that u ignores. To see why this
is a problem, consider two users u and u0 in Table 1. User u
has reported 50% of both the real and the fake accounts he
saw, while user u0 has reported 50% of the fakes and only
5% of the real accounts she saw. It is clear that in this case
u0 is the better flagger, but the score P (u) = P (u0) = 0.5
does not help us draw this conclusion.

u Report Ignore u0 Report Ignore
Real 5 5 Real 5 95
Fake 5 5 Fake 5 5

Table 1: If R is negative (e.g. report spam), u0 is more
skilled at identifying fakes than u.

A more robust metric will take into account a user’s base-
line propensity for reporting; this is especially relevant for a
signal like invitation accept, where some users may accept
all or none of their incoming invitations. To measure this
we use informedness, also known as Youden’s J-statistic [27],
which “quantifies how informed a predictor is for the speci-
fied condition, and specifies the probability that a prediction
is informed in relation to the condition” [21]. Informedness
is defined to be true positive rate minus false positive rate,
which in our case is

Ĩ(u) = Pr[r0 = 1 | y0 = �(R)]� Pr[r0 = 1 | y0 = 1� �(R)].
(4)

(Note that Ĩ(u) can take values in [�1, 1]; negative quaniti-
ties indicate quality of the signal as a predictor of the inverse
classes.) We estimate Ĩ(u) by computing

I(u) =

✓
au

au + bu
�

cu
cu + du

◆
(2�(R)� 1). (5)

If either of the denominators au + bu, cu +du is zero, then u
has interacted with either only real or only fake accounts and
I(u) is undefined. Now our two users u, u0 from Table 1 have
scores I(u) = 0 and I(u0) = 0.45, respectively, reflecting our
intuition that u0 is more skilled at reporting.

Hypothesis Testing. While the informedness I(u) takes
into account all the information we have about user u, it
does not do a good job of distinguishing skilled users from
lucky ones. Consider for example the two users v and v0 of
Table 2, again with a negative reporting signal R. We have
I(v) = I(v0) = 0.5, but it may be the case that v reports
half of all users, whether real or fake; for v0 the di↵erence
between actions on real and fake users is unambiguous.

v Report Ignore v0 Report Ignore
Real 2 2 Real 20 20
Fake 1 0 Fake 10 0

Table 2: If R is negative (e.g. report spam), v0 shows skill
at identifying fakes, while v may have gotten lucky.

To distinguish these two cases we undertake a statistical
hypothesis test, with the null hypothesis being that the user
is equally likely to report real and fake accounts, i.e.:

H0 :
Pr[r0 = 1 | y0 = �(R)]

Pr[r0 = 1 | y0 = 1� �(R)]
= 1. (6)

For a good flagger the odds ratio in (6) will be greater than
1, so we wish to compute a one-sided p-value that gives
the probability of obtaining data at least as extreme as the
observed data, conditioned on H0. Our test of choice is
Fisher’s exact test on 2 ⇥ 2 contingency tables [12], as im-
plemented in the R statistical computing program [22]. If
we let M = ( a b

c d ), Fisher’s test computes a p-value pF (M)
which is defined to be the proportion of 2⇥ 2 matrices that
have the same row and column sums as M and are “less ex-
treme” than M as defined by the Wald statistic [18]. The
advantage of the Fisher test is that it is accurate even with
small sample sizes, as opposed to, e.g., a �2-test.2 We thus
define the Fisher score to be

F (u) = 1� pF

✓
au bu
cu du

◆
, (7)

where we subtract from 1 so that good scores are close to 1.
Using this metric, the two users of Table 2 have F (v) = 0.4

and F (v0) = 0.997, reflecting our intuition that v0 truly does
have di↵erent flagging behaviors on real vs. fake accounts.

One drawback to the Fisher score is that it rewards a sta-
tistically significant di↵erence between reports on real and
fake accounts even if precision and recall are low. For ex-
ample, consider the following user w:

w Report Ignore
Real 20 80
Fake 5 5

2Mehta and Senchaudhuri [18] suggest that Barnard’s
test [1] may be more appropriate for this situation, but we
could not find an implementation that would compute the
test statistic on thousands of samples in a reasonable amount
of time.

1095



This user has P (w) = 0.2 and I(w) = 0.3 but F (w) = 0.95
— she acts di↵erently on real and fake accounts but is not
particularly good at identifying either.

2.2 Repeatability
In the previous section we developed several metrics to

measure reporting ability of social network users. However,
if true ability exists then it must persist upon repeated sam-
pling — knowing that a user has been skilled at reporting
in the past is of no use if that user will not continue to be
skilled in the future. We now develop metrics to measure
this property.

We start with some notation. Let U be a set of users as
above and let D be the set of all possible observations about
a user u 2 U (e.g., the profiles viewed and profiles flagged
by the user u). Let m : D ! R be a scoring function on
the observed data for a user u. Suppose that for each user
u1, . . . , uk, we have two sets of observations d1, . . . , dk and
d01, . . . , d

0
k. We wish to determine how the two sets of scores

s = {m(d1), . . . ,m(dk)} and s0 = {m(d01), . . . ,m(d0k)} are
related, and in particular to assess how much information
one set can give us about the other.

Correlation. The most straightforward measure of this
relation is the Pearson correlation coe�cient [15], which
measures linear correlation between the two vectors s and
s0. If the correlation is close to zero then we can con-
clude that flagging ability is not repeatable; however a score
close to 1 does not necessarily indicate the opposite. To see
this, consider ten users u1, . . . , u10, where m(di) = i/10 and
m(d0i) = i/20. These scores are perfectly linearly correlated
but clearly the second set shows much poorer ability than
the first set, and we would not want to claim that these users
demonstrated repeatability.

We also can compute the Spearman correlation coe�cient,
which is the Pearson coe�cient of the two vectors of ranks
computed from s and s0. The Spearman coe�cient is more
robust to nonlinear e↵ects [15], but the example above still
gets a perfect score.

Persistence. Correlation gives a single measure of whether
scores “match up” between two di↵erent samples. However,
to identify which users are skilled at any given score thresh-
old we need a continuous measure. Specifically, we want
to determine the following: suppose that a score of � indi-
cates a “good” flagger. If user u has a good score on one
set of observations, what is the probability that u also has
a good score on a second set of observations? We estimate
this probability by defining the persistence at score � to be

⇡(�) =
|{ui : m(di) � � ^m(d0i) � �}|

|{ui : m(di) � � _m(d0i) � �}|
. (8)

The symmetry of this definition makes it suitable for situ-
ations such as A/B testing where observations are placed
randomly into one of two buckets.

The persistence score clearly shows that our sample of ten
users described above does not demonstrate good repeata-
bility despite the correlation. If we assume 0.5 is a “good”
score, the sample has ⇡(0.5) = 0.17 since out of the six users
with good scores in either set, only u10 has a good score in
both sets.

2.3 Evaluating Scores
The measurements discussed in Section 2.1 output real-

numbered scores between 0 and 1, which we can then use
to define an ordering on reporters that reflects their rela-
tive flagging ability. If we want to use these scores to label
“skilled reporters” then we must choose a score threshold.
This choice is necessarily a business decision to be made by
weighting the relative costs of false positives and false nega-
tives and picking an operating point. Estimating such costs
is outside the scope of this work; therefore when possible
we present complete curves so the reader can view the data
across the full range of possibilities.

However, we also wish to o↵er a concrete assessment of our
findings, rather than only presenting curves, which necessi-
tates picking a specific score cuto↵. We choose our cuto↵s as
follows: let ⇢ be the average flagging precision for the entire
data set. For each of our metrics we divide the score range
into buckets of width 0.05 and choose the threshold t to be
the smallest bucket lower bound that satisfies the following:

a) The cumulative precision of all buckets with scores � t
is at least (1 + ⇢)/2, and

b) The bucket with scores in [t, t + .05) has precision at
least (1 + ⇢)/2.

Condition (a) requires us to choose a threshold that de-
creases the error rate (i.e., 1 � precision) by at least half
over an average flagger. We include condition (b) to main-
tain high quality across all scores within the “skilled” range.
For example, suppose the following hold over our data set:
⇢ = 0.6, reporters with scores in [0.75, 1] have precision 0.9,
and reporters with scores in [0.7, 0.75) have precision 0.5 but
are not numerous enough to bring the cumulative average
for the bucket [0.7, 1] below (1+⇢)/2 = 0.8. In this case, we
would not want to label the [0.7, 0.75) reporters as skilled,
so we choose t � 0.75.

Combining scores. Given the limitations of each of our
metrics, we do not feel confident labeling a user as “skilled”
based on only a single metric. We thus define a skilled re-
porter u to be one that has at least two of the three measures
Ps(u), I(u), F (u) greater than the appropriate threshold tP ,
tI , tF (computed as described above) on two di↵erent data
sets. In other words, we define skill to mean that two of the
three following characterstics can be repeated over time:

• The user flags with su�cient precision;

• The user flags real and fake accounts in di↵erent pro-
portion;

• The di↵erence between flagging behavior on real and
fake accounts is statistically significant.

3. USER FLAGGING
We now apply the framework of Section 2 to real data,

beginning with user flagging. Most social networks contain
an option to flag profiles or content for being inappropriate
and/or violating the terms of service. This flagging data
then feeds into the back end, where it can be used to take
down content or remove o↵ending members from the site. It
can also provide a measure of recall for classifiers or be used
to label training data.

In this section we investigate whether some members show
a measurable, repeatable skill in flagging fake profiles. If
such a skill existed, the social network could, for example,
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Figure 1: Left: histogram of flags per member, with log-
arithmic y-axis. The rightmost bar consists of all buckets
with fewer than 20 members (i.e. members with at least
18 flags). Right: flagger precision for each bucket in the
histogram.

identify skilled flaggers and use their flagging signals to take
down fake accounts automatically.

In the following discussion we will denote by the reporter
the member initiating the flag action, and by the reportee
the member being flagged.

3.1 Data Collection
We obtained a subset of the flagging data from LinkedIn

for the period from February 15 to August 15, 2016. In order
to focus on fake profiles (as opposed to non-fake, objection-
able content), we consider only user flags in which one of the
following reasons was selected: “Fake Identity,” “Imperson-
ation,” “Misrepresentation,” or “Account Hacked.”3 Since
the flags we are looking at are at the profile level, we don’t
want to give one member credit for flagging the same pro-
file multiple times; in the extreme, this would allow a bad
actor to take down any profile simply by flagging it a lot.
We thus deduplicated the data on (reporter, reportee) pair,
leaving us with a total of 293,114 flags from 227,550 unique
reporters, flagging 237,638 unique reportees.

For ground truth, we obtained labels from LinkedIn’s Anti-
Abuse Team indicating whether each reportee was real or
fake. The number of flags of fake members in this data set
was 101,632, or 35% of the total, comprising 65,992 unique
fake accounts.4 A histogram of the number of members with
each flag count and the precision for each bucket appears in
Figure 1 (buckets with fewer than 20 reporters (i.e. �18
flags) are grouped together in the last bucket). Interest-
ingly, when taken in aggregate, precision does not appear to
increase with the number of flags; in fact, the precision for
the 1-flag bucket is 34% and that for the �18-flag bucket is
37%. So certainly there is opportunity for some reporters to
be particularly good at identifying fake accounts.

In order to compute flagging recall and false positive rate,
we need some estimate of a member’s overall exposure to real
and fake accounts. While there are many ways two mem-
bers can interact with each other (e.g. messaging, articles,
recommendations, search results), we use profile views as a
simple proxy. We obtained logs of member profile views over

3We include the “Account Hacked” option because many
members, upon encountering unwanted activity from a
reasonable-looking account, assume the account was hacked
rather than fake.
4We note that these labels are our best knowledge rather
than incontrovertible truth, especially with regard to false
negagtives (i.e., fake accounts not yet labeled as such).

the same six-month period for each member that flagged at
least once, and labeled the viewee as real or fake.

3.2 Measurability
We consider the three measures of reporter ability defined

in Section 2.1: precision, informedness, and Fisher score.
The cumulative distribution functions of the three scores
are shown in Figure 2.

We began by computing smoothed precision scores for
smoothing parameters ↵ 2 {0, 2�5, 2�4, . . . , 25}. To choose
the best smoothing parameter, we held out one third of the
data as a test set and computed the area under the precision-
recall curve for each choice of ↵. We found that ↵ = 0.5 gave
greatest area under the curve, so we used this value to com-
pute Ps.

We next note that 57% of all reporters flag only once and
are incorrect, while 29% flag once and are correct. These
correspond to the large vertical lines at 0.25 and 0.75 in the
smoothed precision plot. We find that Ps achieves our target
of 67% precision (halfway between 1 and the global average
of 35%) on each score bucket above 0.65 (see Figure 4); we
thus choose tP = 0.65 as the threshold for a skilled reporter
by this metric. We find that 33% of all reporters are skilled
by this definition. However this statistic includes those that
reported once correctly, so only at most 3% of reporters
(7,763) could possibly demonstrate repeatability.

Before computing the informedness score, we observe that
some 73,438 members (32%) saw no fake profiles, and thus
have undefined informedness score. For purposes of plotting
the CDF of Figure 2 we assign these members a score of zero.
For informedness we use the procedure defined in Section 2.3
to obtain threshold of tI = 0.05 for skilled reporters. Indeed,
0.05 is the leftmost point in the Informedness plot of Figure 4
for which both curves are above 0.67. We find that 34%
of all reporters are skilled by this definition; however, the
number of such reporters with more than one flag is only
6% (12,914), which again bodes ill for repeatability.

Finally we turn to the Fisher score. We obatin a thresh-
old tF = 0.2, with 36% of reporters achieving this score or
higher. Taking out those that flagged only once leaves 6%
(14,132 members) with more than one flag.

3.3 Repeatability
To measure repeatability we split our data set approxi-

mately in half and compute the three measures on each half.
To avoid time-based e↵ects (e.g., LinkedIn might have been
better at catching fake accounts in June than in May), we
split according to whether the timestamp (in milliseconds)
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Figure 2: Cumulative distribution functions for the three
measures of reporter ability on user flagging data.
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Figure 3: Blue curves: persistence of the three measures of reporter ability on the user flagging data. Green curves:
cumulative distribution functions for each persistence measure.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Smoothed Precision

score bucket

pr
ec

isi
on

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Informedness

score bucket

pr
ec

isi
on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Fisher Score

score bucket

pr
ec

isi
on

Figure 4: Purple curves: precision of reporters in each score bucket [x, x+ 0.05). Orange curves: cumulative precision of all
reporters with score at least x.

of each observed event is 0 or 1 mod 2. This left 222,366
members (98%) with events in both data sets; however, only
18,138 (8%) have at least one reporting event in each half
of the data. This observation already bodes ill for repeata-
bility, as it assigns no predictive value to 92% of our set of
members. The rest of this section treats only the remaining
8%.

We start by computing the correlation between scores on
the two halves of the data set; results are as follows:

Score Pearson Spearman
Smoothed Precision 0.69 0.66
Informedness 0.52 0.49
Fisher Score 0.62 0.63

Figure 3 shows persistence of each of our three metrics as
a function of the score. (As above, undefined informedness is
assigned a score of zero.) If we let the thresholds tP = 0.65,
tI = 0.05 and tF = 0.2 be the cuto↵s for “good” precision,
informedness, and Fisher scores, respectively, we obtain the
following:

Cuto↵ Persist. Pct. Members
Smoothed Precision 0.65 0.57 0.42 4333

Informedness 0.05 0.62 0.48 5344
Fisher Score 0.20 0.63 0.50 5748

We see that with our chosen cuto↵s, all three scores are
“sticky”: if a member shows skill on one half of the data, the
odds are around 60% that the member will show skill on the
other half. However, even the 50% of members who show
persistence in Fisher score corresponds to only 2.5% of our
initial set of reporters — there are simply not enough mem-
bers that report often enough to demonstrate persistence.

29
3

0

215

4086

1255

192

Sm. Precision Informedness

Fisher Score

Figure 5: Venn diagram of persistent flagging scores. La-
bels indicate the number of members with scores above the
appropriate threshold(s) on both halves of the data.

To quantify who is a skilled reporter, we look for mem-
bers exhibiting two of the three scores above the appropri-
ate threshold tP , tI , tF on both halves of the data. Figure 5
shows the Venn diagram of overlaps. We see that skill ac-
cording to all three metrics overlaps significantly, and a total
of 5,559 members satisfy our criteria for being skilled. This
number represents 31% of all those who flagged once in each
data set, and 2.4% of our initial set of flaggers.

Our analysis thus shows a small set of members who demon-
strate skill at reporting spam. These 5,559 members flagged
a total of 25,636 times at 82% cumulative precision, cover-
ing 17,919 unique fake accounts over the six months of data
collection. This precision is unlikely to be high enough for
a single flag to be cause for removing an account from the
site. However, if we look at only the 4,304 flaggers in the
high-precision band (blue circle in Figure 5), these mem-
bers flagged 13,940 accounts at 97% precision, which is high
enough that one could reasonably take action on a single
flag.
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4. INVITATIONS
One of the core components of a social network is the abil-

ity for members to “connect” with other members. These
connections usually reflect relationships that exist in the of-
fline world (e.g. friend or coworker). Members that are con-
nected have additional privileges that do not apply to non-
connected members. These privileges may include seeing
each other’s detailed profile information and/or contact de-
tails, having each other’s updates show up in a “news feed,”
being recommended for connections, jobs, or products based
on each other’s data, and sending private messages to each
other.

The additional privileges a↵orded to connections are en-
ticing to spammers and scammers: most platforms do not
allow random members to send messages to each other, so
to get information to their targets scammers must connect.
To do this they send invitations to connect, which may ap-
pear to the recipient as email, push notifications, or in-app
badges.

Upon receiving an invitation, the member can do any of
three actions:

• accept: A member clicks “Connect” or ‘X’ on an in-
bound invitation (request to connect in the network).

• reject: A member clicks “Decline” or an ‘⇥’ on an
inbound invitation.

• ignore: The member does not respond to the invita-
tion, either due to not receiving the notification or not
bothering to respond.

A member who is good at identifying spammers should
accept invitations from real accounts and reject (or at least
ignore) invitations from fake accounts. Reject signals from
such members could be used to take automatic action on
fakes, while accept signals could be used as evidence that
the sender is real and can thus be allowed more privileges
(e.g., higher activity limits).

4.1 Data collection
Our invitations data set consists of a subset of invitations

sent by LinkedIn members during June 2016. We took all
invitations sent during that month and labeled the sender as
real or fake using labels provided by LinkedIn’s Anti-Abuse
Team. We call invitations sent by fake accounts “spam” and
invitations sent by real accounts “non-spam.”

We then labeled each invitation as accepted, rejected, or
ignored, based on the recipient’s response. However, the
time dimension adds some complications to the task of pro-
viding meaningful labels. In particular:

• We know the disposition of the invitation at the present
time, but this means that an invitation sent on June 1
has had 29 more days to receive a response than one
sent on June 30. We solve this issue by treating all
invitations receiving an accept or reject more than h
hours after sending as ignored; this places all invita-
tions on equal footing.

• LinkedIn’s fake account defenses were constantly run-
ning during this period. After a fake account is found,
its invitations can no longer be responded to; if this
happens within h hours of sending and before the re-
cipient could respond, then this invitation’s lifetime is

not comparable to others recieved by the same mem-
ber. We thus remove from our data set all invitations
where the sender was restricted less than h hours af-
ter sending the invitation and the recipient did not
respond before the sender was restricted.5

We collected data as described above for h 2 {4, 24, 168}.
We required that each recipient in our data set receive at
least two spam and three non-spam invitations during the
sample period. For each value of h we then sampled 500,000
members. We present our full analysis as above for h =
24, i.e., invitations with actions in the first 24 hours after
sending, and then discuss in Section 4.4 how the other time
periods compare.

4.2 Measurability
If a member truly has the ability to identify fake accounts

from invitations, the accept rate will be lower for invitations
from fake accounts than from real accounts and the reject
rate will be higher. In the terminology of Section 2, invi-
tation accept is a positive reporting action, and invitation
reject is a negative reporting action.

We began by computing smoothed precision scores for
smoothing parameters ↵ 2 {0, 2�5, 2�4, . . . , 25}. To choose
the best smoothing parameter, we held out one half of the
data as a test set and computed the area under the precision-
recall curve for each choice of ↵. We found that for invitation
accept ↵ = 1 gave greatest area under the curve, while for
invitation reject ↵ = 4 was optimal. We will use these values
to compute Ps in the sequel.
We apply our three measures of flagging ability to both the

invitation accept and reject data. Plots of the cumulative
distribution function are shown in Figure 6. We notice right
away that some members act identically on all incoming in-
vitations regardless of whether they are from real or fake
accounts; these members correspond to the vertical jumps
at zero in the plots of I(u).

The precision of invitation acceptance in our entire data
set was 92%, while that for invitation rejection was 22%.
We used the method of Section 2.3 to determine thresholds
for skilled flaggers by each measure:

No bucket of width 0.05 achieved the required precision of
61% for the Fisher score on rejections, so in this case we ap-
plied the procedure of Section 2.3 with buckets [101�t, 10�t)

5This choice does bias our dataset in the sense that“hard-to-
catch” fakes will be overrepresented, but we feel that assum-
ing “easy-to-catch” fakes will in fact be caught is reasonable
for a study of flagging in real life.
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Figure 6: Cumulative distribution functions for the three
measures of reporter ability on the invitation accept signal
(orange) and invitation reject signal (purple).
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Accept Reject
Cuto↵ Pct. Cuto↵ Pct.

Smoothed Precision 0.95 0.05 0.55 0.10
Informedness 0.20 0.27 0.90 0.02
Fisher 0.65 0.15 0.99999 0.0006
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Figure 7: Blue curves: persistence of the three measures
of reporter ability on the invitation accept data. Green
curves: cumulative distribution functions for each persis-
tence measure.

and found that the smallest t satisfying the two conditions is
t = 5, giving us a threshold of 0.99999 for the Fisher score.

We see from the data that in general more users are skilled
at accepting invitations than rejecting them; however this
e↵ect could simply be due to the prevalence of non-spam in
the data set.

4.3 Repeatability
To test repeatability we look at a slightly di↵erent data

set: we split our June 2016 data in half according to whether
the invitation timestamp is 0 or 1 mod 2, and we sample
500,000 members who (a) received invitations in both halves
and (b) received at least one spam and two non-spam invi-
tations in each half. (We note that of all members receiving
spam invitations in the month, condition (a) excludes more
than 75%.) In this data set, 78% accepted at least one invi-
tation in each half and 25% rejected at least one invitation
in each half. As before, we exclude members not reporting
in both halves from our subsequent analysis.

Correlation of scores between the two halves is high for the
precision metric, but for the other two metrics is noticeably
less than for the user flagging data:

Accept Reject
Score Pearson Spearman Pearson Spearman
Sm. Prec. 0.59 0.66 0.75 0.65
Informed 0.23 0.24 0.29 0.28
Fisher Score 0.31 0.33 0.30 0.30

Figures 7 and 8 show persistence of each of our three met-
rics as a function of the score. (As before, undefined in-
formedness is assigned a score of zero.) We observe that
persistence is very low for all measures except precision on
acceptances; very few members can demonstrate repeatabil-
ity on either the invitation accept or the invitation reject
signal.

Using the thresholds for skill calculated in Section 4.2, we
obtain the following:

The Venn diagrams of the overlaps of reporters skilled on
the two halves (Figure 9) show 19,073 members who are
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Figure 8: Blue curves: persistence of the three measures
of reporter ability on the invitation reject data. Green
curves: cumulative distribution functions for each persis-
tence measure.
Accept Cuto↵ Persist. Pct. Members
Smoothed Prec. 0.95 0.46 0.08 14095
Informedness 0.20 0.38 0.53 78290
Fisher Score 0.65 0.20 0.22 17011

Reject Cuto↵ Persist. Pct. Members
Smoothed Prec. 0.55 0.33 0.32 12960
Informedness 0.90 0.22 0.27 7171
Fisher Score 0.99999 0.14 0.01 124

skilled at accepting invitations, and 6,320 skilled at rejec-
tion. These numbers represent 3.8% and 1.3% of all mem-
bers in our data set, respectively. However, since we required
members in our data set to receive at least two spam invi-
tations in the month, a condition which excludes more than
75% of all members receiving spam, the proportion of all
members seeing spam whom we can identify as skilled is no
more than 1.0% for acceptance and 0.3% for rejection.
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Figure 9: Venn diagrams of persistent abilities on invi-
tation accept (left) and reject (right). Labels indicate the
number of users with scores above the appropriate thresh-
old(s) on both halves of the data.

Our skilled accepting members have, cumulatively, 98%
precision on real members, while the skilled rejecting mem-
bers have 99% precision on fake accounts. We conclude that
for skilled flaggers, the invitation accept signal can be strong
enough to definitively place a sender into the “real” cate-
gory, while the invitation reject signal is strong enough to
label the rejected member as a spammer. We note that
since the Fisher score cuto↵ for rejection is nearly impossi-
ble to achieve, most members skilled at rejection have high
precision and informedness, which translates in practice to
flagging few times and almost always correctly.
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Figure 10: Fisher scores for invitation response signal
based on di↵erent response times. Blue curves plot responses
within 24 hours. Green curves plot responses within 4 hours.
Red curves plot responses within 7 days.

4.4 Some Experiments
Multiple invitation windows. Recall that our data to
this point is only counting invitation responses within 24
hours of the send time; acceptances and rejections after this
time are counted as ignores. We use a time bound because
utility of the reputation signal decreases over time: most
fake accounts sending invitation spam are caught within 24
hours, and we wish to use the reputation signal to increase
the speed of takedown.

We now consider what happens as we vary the time bound
h. Specifically, we consider the same data with three di↵er-
ent time bounds: 4 hours, 24 hours, and 7 days. Plots of
the Fisher score appear in Figure 10. We see that as ex-
pected, allowing the signal to “bake in” for a longer period
gives recipients more opportunity to distinguish themselves
as skilled reporters.

Simulating response to spam invitations. Our results
show that some members are good at detecting spam — but
very few. One natural question is whether this result is an
artifact of multiple hypothesis testing; e.g., if you look for an
e↵ect with 95% significance you’ll find it 5% of the time in
random data. To answer this question, we run the following
experiment: we simulate each member’s response to invita-
tions from fake accounts using that member’s responses to
invitations from real accounts as a prior.

Specifically, we wish to replace cu and du in each member’s
matrix (1) with cu + du samples from a binomial distribu-
tion with reporting probability au

au+bu
. However, we cannot

produce such a sample in the case where au or bu = 0, so
we smooth by adding p events to au and (1 � p) events to
bu, where p is the global prior probability of a reporting
event (i.e. accept or reject) on a real invitation. After gen-
erating the samples in this manner, we then ran the same
Fisher test. The results (green curves in Figure 11) show a
slight distinction between real and simulated data in terms
of the score distibution, but persistence drops to zero for
random data while it bottoms out around 15% for real data.
This simulation thus finds almost no members skilled at flag-
ging, suggesting that the small number of skilled members
we found in the real data is not due to random noise.

5. CONCLUSIONS AND OPEN QUESTIONS
Recall from the introduction that we set out to test the

following hypothesis: There are some social network users
who are good at identifying fake accounts.

Through our analysis we have found that such a skill does
exist, but it applies to only a small minority of all users: at
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Figure 11: Fisher score persistence for real and simulated
responses to spam invitations. Blue curves plot real data.
Green curves plot simulated data sampled from a binomial
distribution with prior equal to the smoothed mean on re-
sponses to real invitations.

most 2.4% of members who reported a fake profile through
the flagging interface over a six-month period and at most
1.3% of members who rejected multiple invitation requests
in a one-month period. We also found at most 3.8% of mem-
bers accepting invitation requests to be skilled at identifying
real accounts. On the basis of our analysis, we cannot rec-
ommend that online social networks build a “reporter-based
reputation system” as described in [30], since few reporters
are both good at flagging and can repeat their performance
upon multiple sampling.

One important area for future study is to explore how cues
in the user interface could a↵ect people’s ability to identify
fake accounts. Our data was collected “organically,” i.e.,
without any particular prompting or instructions. It is pos-
sible that surfacing additional feedback to reporters and/or
providing incentives for correctly reporting fakes could en-
courage users to act more often and more accurately and
thus boost the impact of a reporter reputation system.

A second avenue for further work is to explore character-
istics of good reporters. The observation by Wang et al. [25]
that some geographic subgroups of people are more accu-
rate than others when asked to identify fakes suggests that
we could understand and exploit the di↵erences that make
these reporters more accurate.

Finally, we note that our study is based on data from a
single large social network, and we encourage the research
community to reproduce the study using data from other
social networks to see if the same conclusions hold.
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